Call for Guest Editors (600 USD – 1000 USD honorarium)
***
Abstract
Acute severe ulcerative colitis (ASUC) is a growing health burden that often requires treatment with multiple therapeutic agents. As inflammation is localised in the rectum and colon, local drug delivery using suppositories could improve therapeutic outcomes. Three-dimensional (3D) printing is a novel manufacturing tool that permits the combination of multiple drugs in personalised dosage forms, created based on each patient’s disease condition. This study, for the first time, demonstrates the feasibility of producing 3D printed suppositories with two anti-inflammatory agents, budesonide and tofacitinib citrate, for the treatment of ASUC. As both drugs are poorly water-soluble, the suppositories’ ability to self-emulsify was exploited to improve their performance. The suppositories were fabricated via semi-solid extrusion (SSE) 3D printing and contained tofacitinib citrate and budesonide in varying doses (10 or 5 mg; 4 or 2 mg, respectively). The suppositories displayed similar dissolution and disintegration behaviours irrespective of their drug content, demonstrating the flexibility of the technology. Overall, this study demonstrates the feasibility of using SSE 3D printing to create multi-drug suppositories for the treatment of ASUC, with the possibility of titrating the drug doses based on the disease progression.
Keywords: Additive manufacturing of pharmaceuticals and medicines; Digital design and manufacture of drug delivery systems; Extrusion-assisted three-dimensional printing of drug products; Inflammatory bowel disease; Janus kinase (JAK) inhibitors; Pressure-assisted micro syringe; Rectal corticosteroids.